1,272 research outputs found

    Self-consistent theory of many-body localisation in a quantum spin chain with long-range interactions

    Full text link
    Many-body localisation is studied in a disordered quantum spin-1/2 chain with long-ranged power-law interactions, and distinct power-law exponents for interactions between longitudinal and transverse spin components. Using a self-consistent mean-field theory centring on the local propagator in Fock space and its associated self-energy, a localisation phase diagram is obtained as a function of the power-law exponents and the disorder strength of the random fields acting on longitudinal spin-components. Analytical results are corroborated using the well-studied and complementary numerical diagnostics of level statistics, entanglement entropy, and participation entropy, obtained via exact diagonalisation. We find that increasing the range of interactions between transverse spin components hinders localisation and enhances the critical disorder strength. In marked contrast, increasing the interaction range between longitudinal spin components is found to enhance localisation and lower the critical disorder.Comment: 30 pages, 4 figure

    On the scaling spectrum of the Anderson impurity model

    Full text link
    We consider the universal scaling behaviour of the Kondo resonance in the strong coupling limit of the symmetric Anderson impurity model, using a recently developed local moment approach. The resultant scaling spectrum is obtained in closed form, and is dominated by long tails that in contrast to previous work are found to exhibit a slow logarithmic decay rather than power-law form, crossing over to characteristic Fermi liquid behaviour on the lowest energy scales. The resultant theory, while naturally approximate, is found to give very good agreement for essentially all frequencies with numerical renormalization group calculations of both the single-particle scaling spectrum and the self-energy.Comment: 16 pages, 4 embedded figure

    Magnetic impurities in gapless Fermi systems: perturbation theory

    Full text link
    We consider a symmetric Anderson impurity model, with a soft-gap hybridization vanishing at the Fermi level with a power law r > 0. Three facets of the problem are examined. First the non-interacting limit, which despite its simplicity contains much physics relevant to the U > 0 case: it exhibits both strong coupling (SC) states (for r 1), with characteristic signatures in both spectral properties and thermodynamic functions. Second, we establish general conditions upon the interaction self-energy for the occurence of a SC state for U > 0. This leads to a pinning theorem, whereby the modified spectral function is pinned at the Fermi level for any U where a SC state exists; it generalizes to arbitrary r the familiar pinning condition for the normal r = 0 Anderson model. Finally, we consider explicitly spectral functions at the simplest level: second order perturbation theory in U, which we conclude is applicable for r 1 but not for 1/2 < r < 1. Characteristic spectral features observed in numerical renormalization group calculations are thereby recovered, for both SC and LM phases; and for the SC state the modified spectral functions are found to contain a generalized Abrikosov-Suhl resonance exhibiting a characteristic low-energy Kondo scale with increasing interaction strength.Comment: 24 pages, 7 figures, submitted to European Physical Journal

    Local quantum critical point in the pseudogap Anderson model: finite-T dynamics and omega/T scaling

    Full text link
    The pseudogap Anderson impurity model is a paradigm for locally critical quantum phase transitions. Within the framework of the local moment approach we study its finite-T dynamics, as embodied in the single-particle spectrum, in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi-liquid (Kondo screened) and local moment phases. The scaling spectra in both phases, and at the QCP itself, are obtained analytically. A key result is that pure omega/T-scaling obtains at the QCP, where the Kondo resonance has just collapsed. The connection between the scaling spectra in either phase and that at the QCP is explored in detail.Comment: 12 pages, 7 figure

    Interplay between strong correlations and magnetic field in the symmetric periodic Anderson model

    Full text link
    Magnetic field effects in Kondo insulators are studied theoretically, using a local moment approach to the periodic Anderson model within the framework of dynamical mean-field theory. Our main focus is on field-induced changes in single-particle dynamics and the associated hybridization gap in the density of states. Particular emphasis is given to the strongly correlated regime, where dynamics are found to exhibit universal scaling in terms of a field-dependent low energy coherence scale. Although the bare applied field is globally uniform, the effective fields experienced by the conduction electrons and the ff-electrons differ because of correlation effects. A continuous insulator-metal transition is found to occur on increasing the applied field, closure of the hybridization gap reflecting competition between Zeeman splitting and screening of the ff-electron local moments. For intermediate interaction strengths the hybridization gap depends non-linearly on the applied field, while in strong coupling its field dependence is found to be linear. For the classic Kondo insulator YbB12_{12}, good agreement is found upon direct comparison of the field evolution of the experimental transport gap with the theoretical hybridization gap in the density of states.Comment: 8 pages, 8 figure

    Magnetic field effects in few-level quantum dots: theory, and application to experiment

    Full text link
    We examine several effects of an applied magnetic field on Anderson-type models for both single- and two-level quantum dots, and make direct comparison between numerical renormalization group (NRG) calculations and recent conductance measurements. On the theoretical side the focus is on magnetization, single-particle dynamics and zero-bias conductance, with emphasis on the universality arising in strongly correlated regimes; including a method to obtain the scaling behavior of field-induced Kondo resonance shifts over a very wide field range. NRG is also used to interpret recent experiments on spin-1/2 and spin-1 quantum dots in a magnetic field, which we argue do not wholly probe universal regimes of behavior; and the calculations are shown to yield good qualitative agreement with essentially all features seen in experiment. The results capture in particular the observed field-dependence of the Kondo conductance peak in a spin-1/2 dot, with quantitative deviations from experiment occurring at fields in excess of \sim 5 T, indicating the eventual inadequacy of using the equilibrium single-particle spectrum to calculate the conductance at finite bias.Comment: 15 pages, 12 figures. Version as published in PR

    A local moment approach to the degenerate Anderson impurity model

    Full text link
    The local moment approach is extended to the orbitally-degenerate [SU(2N)] Anderson impurity model (AIM). Single-particle dynamics are obtained over the full range of energy scales, focussing here on particle-hole symmetry in the strongly correlated regime where the onsite Coulomb interaction leads to many-body Kondo physics with entangled spin and orbital degrees of freedom. The approach captures many-body broadening of the Hubbard satellites, recovers the correct exponential vanishing of the Kondo scale for all N, and its universal scaling spectra are found to be in very good agreement with numerical renormalization group (NRG) results. In particular the high-frequency logarithmic decays of the scaling spectra, obtained here in closed form for arbitrary N, coincide essentially perfectly with available numerics from the NRG. A particular case of an anisotropic Coulomb interaction, in which the model represents a system of N `capacitively-coupled' SU(2) AIMs, is also discussed. Here the model is generally characterised by two low-energy scales, the crossover between which is seen directly in its dynamics.Comment: 23 pages, 7 figure
    corecore